9. Radical Cations of Tetrazinodi(heteroarenes): An ESR and ENDOR Study

by Fabian Gerson* and Axel Lamprecht

Institut für Physikalische Chemie der Universität Basel, Klingelbergstrasse 80, CH-4056 Basel

(23.IX.93)

¹⁴N- and ¹H-Coupling constants, determined by ESR, ENDOR, and general-TRIPLE-resonance spectroscopy, are reported for the radical cations of tetrazinodi(heteroarenes) 1–8. The results comply with the expectation that donor properties of these compounds are mainly due to the electron-rich dihydrotetrazine ring.

Introduction. – The title compounds [1] [2], a novel class of heteroarenes containing 1,4-dihydro-1,2,4,5-tetrazine as the electron-rich moiety, are powerful donors [3] [4] which have very low oxidation potentials in solution (0–0.5 V vs. Ag/AgCl) [2] [3] and quite moderate ionization energies in the gas phase (6.0–6.5 eV) [5]. Accordingly, forma-

tion of their radical cations is extremely facile, and the corresponding salts were isolated in several cases [2]. Here, we characterize the radical cations of the tetrazinodi(heteroarenes) 1–8 by hyperfine data with the use of ESR, ENDOR, and general-TRIPLE-resonance spectroscopy.

Experimental. – The syntheses of the eight compounds are described elsewhere: 1 [1], 2–6 [2], 7 [1], 8 [1] [2]. Five of their radical cations, 2^+ – 4^+ , 6^+ , and 8^+ , which were isolated as perchlorate salts [2], were studied in both MeCN and CH₂Cl₂/CF₃COOH 1:2 solutions. (In most cases, pure CH₂Cl₂ proved not sufficiently polar to dissolve the salts.) For the three remaining radical cations 1^+ , 5^+ , and 7^+ , the CH₂Cl₂/CF₃COOH mixture was exclusively used as the solvent, in which the paramagnetic ions were generated from their neutral precursors by oxidation with the acid. All radical cations 1^+ – 8^+ were very persistent and could be kept for months in solution at r.t., provided that exposure to light and air was avoided. Their ESR spectra were recorded on *Varian-E9* instrument, while *Bruker-ESP-300* system was employed for ENDOR and TRIPLE-resonance studies.

Results and Discussion. – The ESR spectra of $1^{+\cdot}$ – $8^{+\cdot}$, taken in the range of 243–293 K, exhibited a marked ¹⁴N-hyperfine anisotropy, in particular at lower temperatures. The lines were broadened at the wings of the spectrum, whereby the effect was more pronounced at the high- than at the low-field half. This behavior is characteristic of ¹⁴N nuclei having large and positive coupling constants [6]. For each radical cation, precise $|a_{N\mu}|$ and $|a_{H\mu}|$ values of the ¹⁴N- and ¹H-coupling constants were derived from the corresponding ENDOR spectra and served for the simulation of the ESR derivative curves. The procedure is illustrated in *Figs. 1* and 2 by the spectra of the two basic radical cations $1^{+\cdot}$ and $6^{+\cdot}$. General-TRIPLE-resonance experiments carried out on the ENDOR signals [7] led to the relative signs of $a_{H\mu}$.

The hyperfine data and g factors of $1^{+}-8^{+}$ are listed in the *Table*. The coupling constants $a_{N\mu}$ and $a_{H\mu}$ are arranged in such a way that values for nuclei in topologically similar positions μ of the π -systems are placed in the same line. The assignments to individual positions are based on Hückel-McLachlan calculations [8] using the conventional parameters for hetero- π -centers and adjacent bonds [5] [9] [10]; a further guidance for these assignments was provided by the consistency of the data within the series 1^+-5^+ and 6^{+} -8⁺. The signs of a_{Hu} are in accord with the results of the TRIPLE-resonance experiment, on the reasonable assumption that, in each case, the absolutely largest value is negative. The coupling constants of the ¹⁴N nuclei in the positions $\mu = 3,10$ of 4^{+} and 5,12 of 8^+ , as well as those of the protons in the N-alkyl substituents at these positions, escape observation, because of their apparent smallness (< 0.005 mT); accordingly, the pertinent values are missing in the Table. All data refer to 253 K and to the solvent CH₂Cl₂/CF₃COOH 1:2. Their dependence on the temperature in the range of investigation is only slight. For 2^{+} , 6^{+} , and 8^{+} , the values measured with the solvent MeCN (see Experimental) are very similar to those obtained with CH₂Cl₂/CF₃COOH 1:2 and are, therefore, not presented here.

The expectation that the donor properties of 1–8 are mainly due to the central dihydrotetrazine ring (Fig.3) is borne out by the large ¹⁴N-coupling constants. Interestingly, the sums of $a_{N\mu}$ at the four N-atoms μ are almost constant for 1⁺⁺–5⁺⁺ (1.81 ± 0.03 mT) and 6⁺⁺–8⁺⁺ (1.95 ± 0.04 mT). These sums may be compared with the corresponding values for the radical cations of 1,4-dihydro-1,2,4,5-tetrazine and its substituted derivatives (2.4 ± 0.1 mT) [11–13]. From such a comparison, one concludes that ca.80% of the 'hole', created by the removal of an electron from 1–8, resides on the dihydrotetrazine ring.

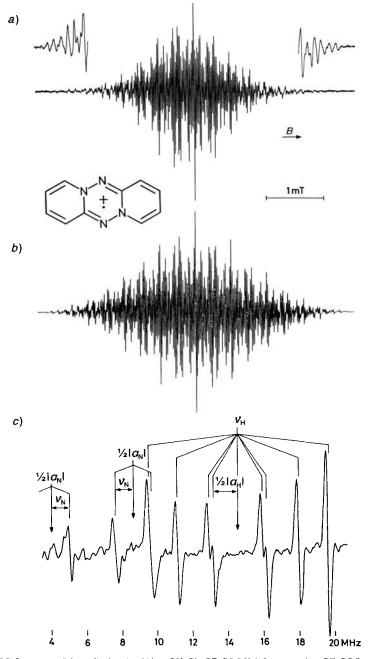


Fig. 1. a) ESR Spectrum of the radical cation 1⁻¹ in CH₂Cl₂/CF₃COOH 1:2 (counterion CF₃COO⁻; temp. 253 K). b) Simulation of the ESR spectrum (coupling constants in the Table; line-shape Lorentzian, line-width 0.018 mT; no allowance is made for the effect of ¹⁴N-hyperfine anisotropy). c) Corresponding ¹⁴N- and ¹H-ENDOR spectrum. The low-frequency signal of the smaller coupling constant a_N could not be detected, because of the poor performance of the ENDOR system below 4 MHz.

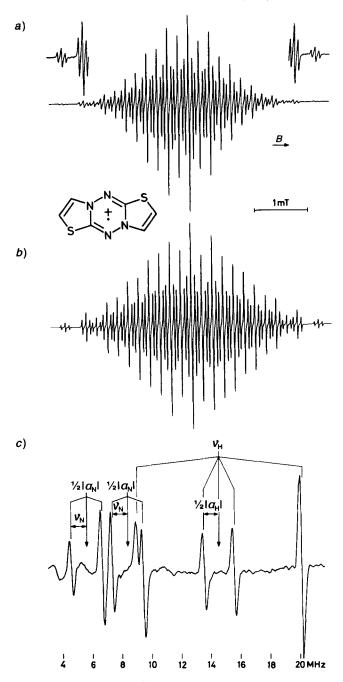


Fig. 2. a) ESR Spectrum of the radical cation 6⁺⁺ in $CH_2Cl_2/CF_3COOH\ 1:2$ (counterions ClO_4^- and CF_3COO^- ; temp. 253 K). b) Simulation of the ESR spectrum (coupling constants in the Table; line-shape Lorentzian, line-width 0.018 mT; no allowance is made for the effect of ¹⁴N-hyperfine anisotropy). c) Corresponding ¹⁴N- and ¹H-ENDOR spectrum

Table. ¹⁴N- and ¹H-Coupling Constants, $a_{N\mu}$ and $a_{H\mu}$ [mT], and g Factors^a) for the Radical Cations 1^+ - 8^+

	1+.	2+-	3+-	4+.	5+-
$a_{N\mu}(2^{-14}N)$	+0.618	+0.570	+0.554	+0.557	+0.599
μ	6, 12	7, 14	7, 14	7, 14	6, 13
$a_{N\mu}(2^{14}N)$	+0.280	+0.330	+0.347	+0.339	+0.323
μ	5, 11	6, 13	6, 13	6, 13	7, 14
$a_{H\mu}(2^{-1}H)$	-0.358	-0.361	-0.364	-0.341	
μ	3, 9	4, 11	4, 11	4, 11	
$a_{H\mu}(2^{-1}H)$	+0.117	+0.110	+0.103	+0.094	
μ	4, 10	5, 12	5, 12	5, 12	
$a_{H\mu}(2^{-1}H)$	-0.243				-0.184
μ	1, 7				5, 12
$a_{H\mu}(2^{-1}H)$	+0.099				+0.081
μ	2, 8				4, 11
$a_{H\mu}(2^{-1}H)$, -	-0.090	-0.084	-0.080	-,
μ		2, 9	2, 9	2, 9	
$a_{H\mu}(2^{-1}H)$		+0.015	+0.019	+0.005	
μ		1, 8	1, 8	1, 8	
$a_{H\mu}(2^{-1}H)$		1, 0	1, 0	1, 0	-0.049
μ					1, 8
$a_{H\mu}(2^{-1}H)$					+0.009
μ					2, 9
μ 	·				2, 9
g	2.0038	2.0036	2.0037	2.0036	2.0039
	6+.	7+.	8+.		
$a_{N\mu}(2^{-14}N)$	+0.596	+0.531	+0.568		··········
μ	5, 10	6, 13	6, 13		
$a_{N\mu}(2^{-14}N)$	+0.400	+0.465	+0.388		
μ	4, 9	7, 14	7, 14		
$a_{H\mu}(2^{-1}H)$	-0.394				
μ	2, 7				
$a_{H\mu}(2^{-1}H)$	+0.074				
μ	3, 8				
$a_{\rm H\mu}(2^{-1}{\rm H})$, -	-0.180	-0.173		
μ		3, 10	3, 10		
$a_{H\mu}(2^{-1}H)$		-0.134	-0.128		
μ		1, 8	1, 8		
$a_{H\mu}(2^{-1}H)$		+0.053	+0.043		
μ		4, 11	4, 11		
$a_{H\mu}(2^{-1}H)$		+0.022	+0.010		
μ		2, 9	2, 9		
	2.0044	2.0040	2.0036		
g	2 0044	2 0040	7.0076		

a) Exper. error: ± 0.002 mT in $|a_{N\mu}|$ and in $|a_{H\mu}| > 0.1$ mT, ± 0.001 mT in $|a_{H\mu}| < 0.1$ mT, and ± 0.0001 in g.

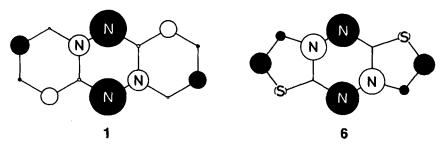


Fig. 3. Diagrams of the HOMO's of 1 and 6 in the frame of the Hückel model. Heteroatom parameters: $h_{\tilde{N}} = 0.75$, $h_{\tilde{N}} = 1.5$, $h_{\tilde{N}} = 1.0$, $h_{\tilde{C}-\tilde{N}} = 0.8$, and $h_{\tilde{C}-\tilde{N}} = 0.7$. All remaining parameters h and h have their standard values.

We thank Prof. Heinz Balli and Drs. Thomas Eichenberger and Martin Stumpf, formerly at the Farbeninstitut der Universität Basel, for providing the compounds 1, 5, and 7 and the perchlorate salts of 2^{+} - 4^{+} , 6^{+} , and 8^{+} . The work was supported by the Swiss National Science Foundation.

REFERENCES

- [1] T. Eichenberger, H. Balli, Helv. Chim. Acta 1986, 69, 1521.
- [2] M. Stumpf, Dissertation, Universität Basel, 1992.
- [3] B. Hellrung, H. Balli, Helv. Chim. Acta 1986, 69, 1531.
- [4] B. Hellrung, H. Balli, Helv. Chim. Acta 1990, 73, 81.
- [5] J. Lecoultre, E. Heilbronner, T. Eichenberger, H. Balli, Helv. Chim. Acta 1987, 70, 1661.
- [6] See, e.g., F. Gerson, 'High Resolution ESR Spectroscopy', Wiley, New York, and Verlag Chemie, Weinheim, 1970, Appendix A. 1.3.
- [7] H. Kurreck, B. Kirste, W. Lubitz, 'Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution', VCH Publishers, New York, 1988, Chapt. 2.
- [8] A. D. McLachlan, Mol. Phys. 1960, 3, 233.
- [9] A. Streitwieser, Jr., 'Molecular Orbital Theory for Organic Chemists', Wiley, New York, 1961, Chapt. 5.
- [10] L. Cavara, F. Gerson, D.O. Cowan, K. Lerstrup, Helv. Chim. Acta 1986, 69, 141.
- [11] W. M. Tolles, W. R. McBride, W. E. Thun, J. Am. Chem. Soc. 1969, 91, 2443.
- [12] F. Gerson, W. Skorianetz, Helv. Chim. Acta 1969, 52, 169.
- [13] F. A. Neugebauer, C. Krieger, H. Fischer, R. Siegel, Chem. Ber. 1983, 116, 2261.